
Charge-density-wave formation in TiSe2 driven by an incipient antiferroelectric instability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 7973

(http://iopscience.iop.org/0953-8984/14/34/316)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 18/05/2010 at 12:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 7973–7979 PII: S0953-8984(02)34493-X

Charge-density-wave formation in TiSe2 driven by an
incipient antiferroelectric instability

Annette Bussmann-Holder1 and Helmut Büttner1,2
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Abstract
Recently reported temperature-dependent synchrotron x-ray thermal diffuse
scattering data (Holt M, Zschack P, Hong H, Chou M Y and Chiang T C
2001 Phys. Rev. Lett. 86 3799) are analysed within an anharmonic electron–
phonon interaction model, where the observed zone boundary phonon softening
is related to an incipient antiferroelectric instability. The parameter-free model
reproduces the temperature dependence of the soft phonon mode in excellent
agreement with the experimental data. Predictions for the charge-density-wave-
induced gap are made and consequences for the electronic structure changes
are discussed.

(Some figures in this article are in colour only in the electronic version)

Charge-density-wave (CDW) formation has been studied extensively theoretically as well
as experimentally [1] since it is thought to be a prototypical consequence of electron–phonon
interaction effects. Besides the Pt-based one-dimensional conductors [2], the layered transition
metal dichalcogenides are also systems where the formation of CDWs has been explored
thoroughly by various experimental techniques [1, 3]. While frequently incommensurate
CDWs are reported, TiSe2 and analogues undergo a transition to a commensurate CDW state
with doubling of the lattice constants [4] and phonon softening [5–7]. Even though TiSe2

has been studied by means of various experimental tools during the last few decades, no
direct evidence for phonon softening in connection with CDW formation has been obtained
until recently, when temperature-dependent synchrotron x-ray thermal diffuse scattering
experiments revealed that the CDW formation is intimately tied to the condensation of a
zone boundary phonon mode [8]. These new results yield important information about
the microscopic mechanism of the CDW state, which was speculated to be due to exciton
formation [9–11], band Jahn–Teller effects [3, 12] or the suppression of an antiferroelectric
transition due to carriers [10]. Various lattice dynamical calculations [7, 13] have been
performed for TiSe2 to reproduce the few experimental results on the phonon dispersion and/or
the Raman scattering data. Also in [8] the earlier model parameters have been used in order to
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model the new data and a fitting to the experimental temperature dependence has been carried
through to mimic the zone boundary mode softening.

In the following we will show that these new experiments can be reproduced without any
fitting parameters by using a nonlinear electron–phonon interaction scheme, which typically
can be applied to model ferroelectric phase transitions [14–17]. We use this specific model to
calculate the dynamical properties of TiSe2 because the experimental data are astonishingly
reminiscent of those for antiferroelectric systems, which can be understood in terms of the
above model by folding back the soft zone boundary mode to the zone centre [16]. Of course
we are aware of the fact that this modelling does not capture the full band structure complexity,
but we assume that the main effects of charge ordering are related to the rearrangements
of the Se-related p electrons and the superlattice formation. This assumption is strongly
supported by results from ab initio band structure calculations which have shown that a single
structural parameter controls the electronic properties [18]. Phenomenologically, the lattice
dynamical model is a nonlinear shell model representation where the nonlinearity is located
at the chalcogenide-ion lattice site, since these doubly negatively charged ions are unstable
as free ions [19]. The relevant dynamics of TiSe2 stems from displacement patterns which
are a superposition of three distortion waves [5]. This superposition allows one to represent
the corresponding dynamical pattern along the relevant crystallographic direction within a
pseudo-one-dimensional array, where only a transverse optical mode has to be considered.
The corresponding Hamiltonian reads [15]

H = 1
2

∑
n

[mi u̇
2
in + mev̇

2
1n] + 1

2

∑
n

[ f ′(u1n − u1n+1)
2 + f (u2n − v1n)

2 + f (u2n+1 − v1n)
2]

+ 1
2

∑
n

[g2(v1n − u1n)
2 + 1

2 g4(v1n − u1n)
4]. (1)

Here mi (i = 1, 2; 1 = Se, 2 = Ti) are the ionic masses with displacement coordinate u, and
v is the Se-related electronic shell displacement coordinate. While the coupling f of the Se
shell to the nearest-neighbour Ti core is harmonic, the on-site core–shell coupling at the Se
lattice site consists of a harmonic term, g2, and an anharmonic one, g4. In ferroelectrics these
two terms typically have opposite sign, g2 being attractive while g4 is repulsive, thus creating a
local double-well potential. This is not necessarily true for other compounds where the signs of
both couplings have to be determined self-consistently. However, independently of the signs of
g2, g4, stability of the system is in each case guaranteed by the next-nearest-neighbourcoupling
constant f ′. Treating the shell motion within the adiabatic approximation and introducing a
relative core–shell displacement coordinatew = v−u at the Se lattice site, the third-power term
in w, which appears in the equations of motion,can be replaced by a cumulant expansion such as
g2w + g4w

3 = w(g2 + 3g4〈w2〉T ) = gT w, where 〈w2〉T is the thermal average over the relative
core–shell displacement coordinate which has to be determined self-consistently via gT (q) =
g2 + 3g4

∑
q, j

h̄
ω(q, j)w

2(q, j) coth h̄ω(q, j)
2kT , where the frequencies are dependent on momentum

q and branch j , and gT becomes a function of momentum and branch as well. The equations
of motion obtained from equation (1) and using the above definition for gT (q) ∼= gT read

−m1ω
2U1 = −[4 f ′ sin2(qa) + 2 f̃ ]U1 + 2 f̃ cos(qa)U2

−m2ω
2U2 = −

[
4 f f̃

gT
sin2(qa) + 2 f̃

]
U2 + 2 f̃ cos(qa)U1

(2)

where the shell displacement has been treated in the adiabatic approximation, f̃ = f gT /(2 f +
gT ) and U1, U2 are the eigenvectors. The resulting lattice mode frequencies, which enter the
definition of gT , are given by
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±
{[
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[
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. (3)

Since the lattice constants of TiSe2 double upon CDW formation, we fold—in a similar
manner to antiferroelectrics—the acoustic branch back to the zone centre and fix the
involved parameters f, f ′ through the experimentally given zone boundary frequencies;
i.e. ω2

T A(q = 2π/a) = (1/m1)[4 f ′ + 2 f gT /(2 f + gT )] and ω2
T O(q = 2π/a) = 2 f/m2. The

on-site harmonic and anharmonic core–shell couplings have to be determined self-consistently
through the constraint that gT = 0 at the CDW transition temperature Tc. This corresponds to
the following constraint for the core–shell interactions:

|g2|
3g4

=
∑
q, j

h̄

ω(q, j)
w2(q, j) coth

h̄ω(q, j)

2kTc
(4)

with ω as defined by equation (3). Since the definition of gT is valid at all temperatures,
a single set of core–shell coupling constants is obtained. The parameters, as derived from
experiment together with the self-consistently derived electron–phonon couplings, are of the
same order as in ferroelectrics and are listed in table 1. In figure 1 we show a comparison of
the experimental and theoretical data for the frequency of the soft zone boundary mode as a
function of temperature for both regimes, the ‘paraelectric’ and the CDW state. Obviously an
extremely convincing agreement between theory and experiment is achieved by our theoretical
modelling. Since the data below Tc are an extrapolation of the high-temperature data and
do not correspond to actual measurements [8], we consider our slightly different theoretical
results as a challenge to experimentalists to test this regime for temperature dependence of
the soft mode. Even though early Raman measurements [20] already looked into the CDW
state, the experimental resolution seems unsatisfactory to us for comparing the results with
our modelling. In agreement with [8], the scattering intensity variation with temperature is
obtained mainly through the weight of the low-frequency mode at the zone boundary and
is approximately proportional to 1/ω2. In figure 2 we show our results which compare
astonishingly well with the data of [8] shown therein in figure 2. Similarly we are able to predict
the dispersion of the soft zone boundary mode,but in contrast to previous calculations [7, 8, 13],
not by fitting the parameters with variations of temperature, but by using the self-consistent
method outlined above. In figure 3 we compare our model predictions with previous ones [8]
and observe again an extremely good agreement.

The question which arises here is—of course—how can this scenario,based on an incipient
antiferroelectric phase transition, be related to the low-temperature CDW state? As outlined
above, the rearrangement of the Se p electrons is modelled by an effective electron–phonon
interaction Hamiltonian where the coupling strength gT is determined by the above-derived
self-consistent procedure. It is important to note here that the magnitude of the relative core–
shell displacement coordinate w determines the degree of electron localization/delocalization
where the limit w → ∞ corresponds to complete ionization, while for w → 0 the dipole
moment is constant. Obviously neither of these limiting cases applies here,but the temperature-
dependent changes in w indicate the degree of electronic redistribution introduced through the
coupling to the lattice. These redistributions are frozen in at Tc and give rise to the charge-
density-wave formation below Tc. In analogy to [2], the corresponding Hamiltonian reads
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140 180 220 260 300
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4  Experiment
 Theory

Frequency [THz]

Temperature [K]

Figure 1. The temperature dependence of the soft zone boundary mode: squares refer to results
of [8]; circles are theoretical results.
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Figure 2. Calculated temperature-dependent scattering intensity proportional to 1/ω2.

Table 1. Model parameters entering equation (1). The electron–phonon couplings g2 , g4 refer to the
high-temperature phase. For T < Tc, both are a third of the values given in table. (Note: the signs
of g2 and g4 are reversed as compared to the case for ferroelectrics, indicating the tendency towards
delocalization of the Se p electrons and a local instability. This local instability does not reflect the
overall crystalline stability which is preserved, as will be shown in another communication, where
a double-well potential arises for temperatures T > Tc and a broad single minimum potential for
T < Tc.)

m1 (10−22 g) m2 (10−22 g) f (104 g s−2) f ′ (104 g s−2) g2 (104 g s−2) g4 (1022 g s−2 cm−2)

2.662 0.4663 2.3875 0.4679 2.0313 −0.208

H =
∑

p

εpc+
pcp +

∑
q

h̄ωqb+
q bq +

1√
N

∑
p,q

gT (q)c+
p+qcp(bq + b+

−q) (5)
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Figure 3. Comparison of the phonon dispersion curves of TiSe2 as a function of temperature along
the symmetry direction A–L from [8] (dotted curves and triangles) and the present calculations
(full curves and squares)

where c, b are annihilation and creation operators for electrons with energy εp and transverse
phonons with frequencies ωq which are taken from the above calculations, as the electrons
involved in the core–shell coupling are—for the above-given reasons—assumed to be the
same ones as gave rise to the CDW formation. N is the number of unit cells in our pseudo-
one-dimensional model. The important difference from various earlier models arises here
from the fact that anharmonic terms are explicitly included. As will be shown below,
these terms provide a natural explanation for the resistivity anomalies observed at the phase
transition temperature [5] and explain the enormous redistribution of electronic band states
with temperature which have been observed in photoemission experiments [21, 22]. Within
equation (2) the CDW transition temperature Tc is given by kB Tc = 2.28εF exp(−2β), where
εF is the Fermi energy and 2β is the solution of [2]

2β = εF

∫ √
(ε2

F +�2)

�

dε
tanh(ε/2kB T )

(ε2 − �2)1/2(ε2
F + �2 − ε2)1/2

(6)

where � is the phonon-induced gap and is proportional to gT . Here � is related to the
corresponding density-of-states function as follows:

Nc(ε) = N(0)εF |ε|(ε2
F + �2 − ε2)−1/2(�2 − ε2)−1/2 (7)

which for T = 0 yields �(0) = 4εF exp(−2β).
Equation (6) together with the Tc-defining equation and equation (7) are again solved self-

consistently using the previously determined value of gT , with no further adjustable parameter.
Interestingly we find a strong temperature dependence of the Fermi energy which has a cusp
at Tc (see figure 4) and is a strong indication of redistributions of electron densities at the
Fermi level [21, 22] together with large changes in the effective free carrier mass which have
been reported in [23]. It should be noted here that the absolute values of εF as derived from
our analysis are unrealistically high, which we attribute to the approximation scheme used
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Figure 4. Relative change of the Fermi energy as a function of temperature.

in [2]. Consequently we show in figure 4 the relative variation of εF with temperature. The
observed redistributions have, as a consequence, strong effects on the conductivity. As already
noted above, strong anomalies have been reported in the resistivity in TiSe2 around Tc [5]
which have been interpreted as a strong temperature dependence of the carrier density where
no explicit explanation could be offered for this effect. Here we can attribute the anomalies
as arising from nonlinear electron–phonon interactions caused by a soft antiferroelectric zone
boundary transverse optical mode. While there is a strong T -dependence of εF above Tc, this
obviously vanishes below Tc and is indicative of the new CDW state. The zero-temperature
CDW gap is derived from �(0) = 4εF exp(−2β), is found to be 28 meV and exhibits a BCS-
like temperature dependence. To our knowledge there are no experimental values available
for the magnitude of the gap and we hope that our predictions will be verified soon.

In conclusion, we have shown that the microscopic origin of the CDW transition is the
formation of an incipient antiferroelectric state which is driven by anharmonic electron–phonon
interactions. Although we cannot rule out the occurrence of an actual antiferroelectric state
induced by the p-electron polarizability, this state may be hidden by the CDW state and not
easily detectable, but can clearly be indirectly inferred from dielectric constant anomalies [23].
The numerical calculations are based on a parameter-free self-consistent phonon approximation
scheme and yield excellent agreement with many experimental data. Besides making explicit
predictions for the CDW gap value, we also find strong evidence of anharmonic phonon-driven
electronic redistributions with temperature which we consider to be the cause of the observed
resistivity anomalies. Even though our calculations have been performed for the specific
example of TiSe2, we believe that antiferroelectrically driven CDW formation is common also
to other compounds such asβ-Na(Ag)V2O5, where antiferroelectric ordering of the intercalated
cations is observed to precede a charge-ordering transition [24, 25]. Therefore we propose
that an excitonic mechanism in the transition metal dichalcogenides can be ruled out. Since,
to our knowledge, in the other members of the Ti dichalcogenide family, TiS2 and TiSe2, no
anomalous phonon softening has been observed, we attribute this finding to the fact that a
CDW instability is also not present.
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